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EFFECTS OF NON-PROPAGATING PLATE WAVES ON
DYNAMICAL STRESS CONCENTRATIONS

J. J. McCoY
The Towne School of Civil and Mechanical Engineering, University of Pennsylvania,

Philadelphia, Pennsylvania

Abstract-The concentration of stress around a circular hole in an infinite elastic plate during passage of a
plane extensional wave is studied within the framework of an approximate theory which takes into account the
effect of coupling between extensional symmetric thickness-stretch and symmetric thickness-shear deformations.
Of particular interest is the very large stress concentrations that are achieved for certain combinations of plate
Ihickness, hole diameter and incident wavelength. The source of these large stress concentrations is seen to lie
in the presence of a vibration of large magnitude which is confined to a region in the immediate vicinity of the
hole.

INTRODUCTION

IN a previous paper [1] on the effects of non-propagating plate waves (i.e. waves with
complex wavelengths) on the dynamical state of stress in an elastic plate in which there
is a circular hole, an approximate theory [2] which incorporates such waves was used to
study the reflection from such a hole of the single extensional plate wave which is
propagating at all frequencies. The solution obtained was investigated to ascertain under
what conditions it would produce the same results as would generalized plane stress
theory for the reflected extensional and face shear waves which have real wavelengths.
Generalized plane stress theory, of course, does not contain any non-propagating plate
waves. The results showed that agreement would be achieved in the limit of zero plate
thickness/incident wavelength ratio provided the ratio of plate thickness to hole diameter
also goes to zero.

In the present paper the state of stress in the immediate vicinity of the hole during
passage of plane extensional waves is obtained using the second order equations and is
discussed. In particular, interest is centered on any concentration of stress that may arise
due to the presence of the hole. The problem studied here has previously been investigated
within the framework of generalized plane stress theory by Pao{3] who found a maximum
increase in stress concentration factor (i.e. defined as ratio of maximum value obtained
for principal stress resultant with the hole present to maximum value obtained without
the hole present) of approximately 10% over that which occurs in the statical case. His
results are independent of the thickness of the plate which does not explicitly appear in
generalized plane stress theory. It was one of the purposes of this study to investigate the
range of validity of Pao's solution by numerically comparing the results for several values
of plate thickness. With respect to this, it should be kept in mind that the numerical
difference in results predicted by the two theories is not a true measure of the accuracy
of either theory and in the absence of experimental verification, experience must be relied
upon to conclude that if the numerical difference is small, the error associated with either
will be small. In addition to serving as a guide as to the limitations of the generalized
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(1)

(2)

plane stress solution, the second order solution contains some information as to the
variation of stress across the thickness of the plate whereas the generalized plane stress
solution can only give the average stress across the thickness.

Finally, the second order solution allows an investigation of the effects of "edge
vibrations", that arise in the vicinity ofany traction free boundary, on stress concentrations.
The presence of edge vibrations was first noted by Shaw [4] in his experimental investiga
tions of axially symmetric extensional vibrations of barium titanate disks. Shaw's experi
ments further showed that at a specific frequency these edge vibrations were in resonance
with the radial extensional motion. Gazis and Mindlin [5] were able to show that the
origin of the edge vibrations resides in the non-propagating plate waves. They accomplished
this by using the second order equations used in this report to solve the problem Shaw
investigated experimentally and were able to predict the presence of the edge vibrations
and of the resonant like behavior of these vibrations at a frequency near, although some
what lower, than Shaw's measured value. The possibility of obtaining vibrations of large
magnitude confined to the region of a hole in a plate introduces the possibility of extremely
large stress concentrations. The investigation of this possibility is beyond that of
generalized plane stress theory.

Briefly, the results show rather good agreement for the stress resultants as predicted
by the two theories in a region limited to small values of plate thickness to hole diameter
ratio and of hole diameter to incident wavelength ratio except for ranges of values of
these quantities in the immediate vicinity of certain discrete values. The divergence of the
stress distribution across the thickness from that of a uniform distribution is also found
to be small over the same region as above, except in the vicinity ofthe same discrete values
mentioned above. Finally, it is possible to relate the combinations of plate thickness, hole
diameter and incident wavelength at which there are large discrepancies in the results
predicted by the two solutions to the presence of an edge resonance as discussed above.

SECOND ORDER EQUATIONS

Extensional motions which are varying harmonically in time are governed, according
to the Mindlin-Medick approximation, by the equations

VZ<Pj+c;;<Pj = 0 j = 1,2,3

J,N Z
lf/l +PWZlf/l = 0

Z (z Z 15J.lk~}J.lV If/z + pk4w -----p:- !/J z = 0

In equations (1), the displacement potentials fPh = 1,2,3) and 'Pj = !/JjO (j = 1,2) where
n represents a unit vector normal to the plane of the plate are related to the plate displace
ments u(O), u~l) and U(2) as defined in Ref. [2], accordil)g to

3

u(O) = L V<Pj+VX\jIl
j= 1

3

U}l) = L aj<pj
j= 1

3

L fJF<pj+VX\jIz,
j=l



where
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and

rxb .

j = 1,2,3

j = 1,2,3
(3)

(5)E' = 4,u(A + ,u)
A+2,u

Furthermore, ~j U= 1,2,3), the propagation constants of the three extensional modes,
are given by the cubic equation

all au 0

au a22 a23 = 0

o a23 a33

where

all = K 2z 2 _02

_ k2
2 4K2ki k; 0 2

a22 - 3 Z +~-3

E' 2 12k~ k~ 2
a33 = -Z +----0

3 1[2 5

and

Z = 2~b
1[

K 2 _ A+2,u _ 2(1-v)
- -,u- - (1-2v)

In equations (8), v is Poisson's ratio.

(6)

(7)

(8)
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(9)

The state of stress at a point may be expressed in terms of quantities invariant under a
transformation in the plane of the plate by means of two dyadics .:r..(0) and .:r..(2), one vector
1:~1) and one scalar ,~oi. The physical interpretation to be given-to these quantities is
evident from [2]. They are related to the displacements according to

to) = 2 [A (V . u(O) + ~IU~l))!+ p(Vu(O) + u(O)V~

;(2) = i[E'v(V. U(2»)! +p(VU(2l+ U(2)V)]

(1) _ 2/-lk~ (2) 2/-lk~v (1)'2 - b u + 3 U2

,(0) = 2[(A+2/-l)kiu(l)+Ak V u(o)J
22 b 2 l'

In equation (9),1 represents the Idemfactor.

INCIDENT AND REFLECTIVE WAVES

Following Pao [3], consider the case of an incident train of plane extensional waves
which propagate in the lowest plate mode in the positive x direction. Such a wave train
can be represented by a potential 'PV) of the form:

'PVl = 'Po exp i(~1X - wt) (10)

where ~ 1 is the propagation constant of the lowest extensional mode. By applying the
Fourier-Bessel expansion theorem, 'PVl can be expressed in polar coordinates (r,O) as:

in which

00

'PV) = L 'Po£ninJn(~lr)cos(nO)exp(-iwt)
n=O

if n = 0

(11 )

= 2 if n ~ 1

and Jn denotes the Bessel function of the first kind of order n.
Upon striking a traction free boundary at r = a, the incident wave will generate

outgoing extensional waves and shear waves which are expressed by
00

'Pr l = L AnjH~I)(~jr)cos(ne)exp(-iwt);
n=O

00

/fir) = L BnjH~I)(ol)sin(nO)exp(-iwt);
n=O

j = 1,2,3

j = 1,2
(12)

where H~I) denotes the Hankel function of the first kind of order n. The potentials defined
by equations (12) will satisfy equations (1) provided the (,/s are the propagation constants
of the extensional modes and the o/s are the propagation constants of the face shear
modes given by



and
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(13)

o~ = pk~OJ2 _ 15k~
J1 b2

The coefficients A nj U= 1,2,3; n = 1, ...) and B nj U= 1,2; n = 1, ...) are determined
by the conditions to be satisfied on the boundary of the circular cavity. For a traction
free surface, the appropriate conditions are

r~~) (r = a) = r~) (r = a) = r(,1/ (r = a) = r~;) (r = a) = r~~) (r = a) = 0 (14)

where, in the above set of equations, the r's represent the sums of stresses resulting from
incoming and outgoing waves.

Substitution of the potentials given by equations (11) and (12) into equations (2) and
the result into equations (9) and then making use of equations (14) and the orthogonality
property of cos(nO) over a range of 2n results in a system of five linear algebraic equations
for each set ofreftected amplitudes. Letting C nj = An) 'Po; j = 1,2,3 and C nj = B nj - 3/ 'Po;
j = 4, 5, the five equations which arise for a specific term, n, may be expressed as

where

s
L T\j)Cnj = F ni
j= 1

i = 1,2, 3, 4, 5 (15)

j = 1,2,3

j = 1,2,3

j = 1,2,3

T!~) = [2n(n-l) Q2JH(1)(ZS)+~Z .N(1) (Z .S)
IJ S2 n J S J n + 1 J

2n t n-l ~TP! = - Z .N(1) (Z S) ---H(1)(Z S)
2J S J n + 1 J S n J

nn! = A{[(I-V)n(n-l) Z~J H(1)(Z.S) + I-vZ .H(I) (ZS)}
3J I-v S2 J n J S J n+l J

71j) = Pj T2j j = 1,2,3

T(n! = (p.+ ii j )[!:H(1)(ZS)_Z.H(I) (ZS)l
SJ J 3 S n J J n + 1 J ~

T(n) = 2n fz H(1) (Z S)-n-lH(1)(Z S)l
14 S L4 n+ 1 4 S n 4 J

[
2n(n-l) J 2TIn) = _Z2 H(I)(Z S)+-Z H(1) (Z S)

24 S2 4 n 4 S 4 n+ 1 4

n~) = i[ZsH~I)(ZSS)- n~IH~1)(ZsS)J

TIn) _ [2n(n -1) Z2J H(I)( S) 2 (1)
4S - S2 S n Zs +SZsHn + 1(ZsS)

TIn) = '2.H (1)(Z S)ss S n S

'T'In) _ 'T'In) _ 'T'In) _ 'T'In) 'T'In) 0
It'S - lis - 134 - 144 = 154 =

j = 1,2,3

(16)
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and the Fn/s are given by

Fni = -fninRe[Tli)] i = 1,2,3,4,5 (17)

In equations (16) and (17) the following non-dimensional quantities have been introduced,
in addition to those given previously.

Z4,5 2M1,2/n

(18)

S na/2b

The generalized plane stress solution to the same problem may be obtained by setting
C2 = C3 C5 = 0, and using the first two algebraic equations, with Z 1 taken as its
limiting form as 0 goes to zero, to determine C1 and C4• It is not difficult to show that
the generalized plane stress solution is independent of the ratio S = na/2b.

PRINCIPAL STRESSES AND STRESS CONCENTRATIONS

The maximum principal stress resultant due to the incident wave alone is given by

-4qJo
I-v

(19)

(20)

Since T~~) = T~~) = 0 at r = a, T~~) = 0 and T~~) are the principal stress resultants and
r~;) = 0 and rW are the principal stress double moments at the boundary. Making use of
the equations defining r~~) and TW, it follows that the incident and reflected waves give
rise to the following values at the boundary r = a

2 oo( 3 )T~O) = n;;~o n~o GnO + j~l AnPnj+ BnOGn4 cos(nO) exp( - iwt)

2 00 (3 )T~2)= -n .u~o2 L K no + L AnjKnj+Bn2Kn5 cos(nO)exp(-iwt)
5(1-v) n=O j=l

where

GnO = fni
n{[2Zi -02 - 2n(;;I)]Jn(Z lS)_ 2:1Jn+l(ZlS)}

_[2 2 2n(n-l)l 2Zj .
Gnj - 2Zj -0 S2 JHn(ZlS)-sHn+l(ZjS), .i = 1,2,3

2n Rn-l) J (21)
Gn4 = S [-S-Hn(Z4S)-Z4Hn+l(Z4S)J

K no = fninPl{~I-V)"(nS~I)+vZ~ In(ZlS)+(I-V9Jn+l(ZlS)}

K nj = Pj{[(1-V)n(~~l)+VZJJ Hn(ZjS)+(l-V9Hn+1(ZjS)}

Kn5 = (l-V~[Z5Hn+l(ZjS)_(n~I)Hn(ZjS~
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Neglecting the harmonic time variation, Pao [3] defined the ratio 7:~0)/7:~0) as the stress
concentration factor. Since the average stress across the thickness of the plate is all that is
included in generalized plane stress theory such a definition appears to be the only
meaningful one. The second order theory, on the other hand, contains some information
on the manner in which the stress varies across the plate thickness by giving not only the
average stress but also the average of the second moment of the stress distribution taken
about the median plane of the plate. It would therefore appear to be more meaningful,
in the present case, to attempt to use 7:~0) and 7:~2) to construct an approximate stress
distribution across the plate and then use the maximum value so found in a definition of
the stress concentration factor. One way of doing this would be to proceed in a manner
analogous to the derivation of the second order equations and assume that the stress
distribution across the thickness is expandable in terms of Legendre polynomials in the
thickness coordinate. Then, 4°) and 7:~2) are simply the coefficients of the zero-th order
and second order polynomials, respectively. If we now assume that all other coefficients
are zero, an approximation to the stress distribution is obtained. Unfortunately, as
explained in Ref. [2], the second order Legendre polynomial does not represent a good
approximation to either the distribution of the thickness-stretch or the thickness-shear
modes of the exact theory. Indeed, it was the discrepancy in just these approximations
which led to the incorporation of the correction factors of the second order theory.

For this reason, no attempt has been made to obtain the maximum stress across the
thickness and the stress concentration factor is defined as before, namely 7:~0)/7:~0). The
ratio 7:~l)/7:~0) is taken to give a measure of the average difference between the actual stress
distribution and a uniform stress distribution.

RESULTS AND DISCUSSION

By taking the appropriate limits, it is possible to show that the above solution reduces
to the generalized plane stress solution [3] as the plate thickness-incident wavelength
ratio approaches zero provided that the plate thickness-hole diameter ratio also approaches
zero at an equal to or faster rate. It is also possible to show that the solution reduces to
that of a plane wave reflecting from a plane boundary [5] in the single limit of the plate
thickness/hole diameter ratio approaching zero.

Numerical results were obtained from the above solution by means of an IBM 7040.
As explained previously, [2], a specified value for Poisson's ratio, taken here to equal
0'30, determines the compensating factors k; (i = 1,2,3,4). For an assumed value of the
non-dimensionalized frequency, n, the propagation constants for the three extensional
waves can be obtained from the cubic equation (6) while those for the two face shearing
waves can be calculated directly by means of equation (13). With these results and a
specified value for plate thickness-hole diameter ratio, equations (16) and (17) determine
71i) (i = 1, ... 5; j = 1, ... 5) and Fni (i = 1, ... 5) which in turn determine the amplitudes
of the waves generated at the boundary of the hole by a propagating plane extensional
wave of the assumed frequency. Finally, knowing the amplitudes of the waves generated
by the cavity allows the principal stresses and principal double moments at the cavity
to be obtained by direct calculation according to equations (20).

Following the above procedure a table was calculated relating n to 7:~0) and 7:~2) with
alb as a parameter. All intermediate calculations were carried out to an accuracy of lO-8
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and the series defining r~O) and rlfl were truncated when the ratio of the last term retained
to the sum was less than 10- 4

. This required retaining a maximum of 16 terms of the
series. The tabulated results are summarized in Figs. 1-6.

FIG. 1. Stress concentration factor, 8 = O. (a) real part, (b) imaginary part, (c) magnitude.

Figure 1 shows the stress concentration factor r~O)/r~O) at e = 0 as a function of the
hole diameter/incident wavelength ratio (~, a) for various values of hole diameter/plate
thickness ratio (a/b). As noted in the figure, the graphs for alb ~ 5, are all identical, for
the scale chosen, over the entire range of values for ~, a that is shown. This agrees with
the generalized plane stress solution which predicts results to be independent of a/b. A
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comparison with the results presented by Pao [3] shows no noticeable difference between
the results predicted here for alb ~ 5 and those predicted by the generalized plane stress
theory. Again this statement is valid only for the range of values shown.

For alb < 5, the results show agreement to a varying degree over a successively smaller
region of ~ 1a as alb decreases. The most striking feature of the curves for alb = 1, 2 and 3
is that the disagreement between the two solutions becomes excessively large for values
of ~ 1a 'narl'owlydistributed around a few discrete points. The rapid change in the time
lag between the occurrence of -rtO) and 't'~O) as a function of ~ la is also obvious in the
vicinity of these discrete values. It is possible to relate these occurrences to the presence
of an edge resonance. This will be done when the amplitudes of the waves generated at
the ,boundary of the cavity are studied.
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It might be noted that the apparent discontinuities or infinities in the various graphs
appear simply because of the scales chosen for the ordinate. The stress concentration
factors are continuous and bounded functions of ela; however, a greatly enlarged vertical
scale would be required to show this.

Figure 2 relates ,V)/r~O) to e,a at e= 0 for various values ofalb. r~2)/r~O) gives a measure
of the departure of the stress distribution across the plate thickness from a uniform
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distribution, normalized with respect to the average stress. For alb = 5, the results show
this departure to be quite small over the entire range of values for ~ la with increases
occurring at both ends of the range. The increase that occurs as ~la approaches zero
does so because T~O) becomes small rather than because of an increase in the non-uniform
variation of stress across the thickness. For alb < 5, the magnitude of T~)/T~°1, in general,
increases for a fixed value of ~ la as alb becomes smaller. This conclusion is obviously
not valid in the vicinity of an ~la which corresponds to an edge resonance for a given alb.
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In such a region the magnitude of r~2)/r~O) increases markedly for that value of alb which
corresponds to the resonance. Both of these results agree with intuition and the knowledge
that the non-propagating plate waves give rise to a non-uniform stress distribution. It is
to be expected that such waves will playa greater role for a given value of ~ la as alb
becomes smaller. In the vicinity of an edge resonance, the non-propagating waves are
expected to play an even larger role.

20-

15

10

f\
1'\

f '\
I, .1.\ '/ .h :l ..' ........... : J
:1 .J .. "-
~ \ ./o ;: ' -:-,..... 7

:--:-:-:-7"-:--.. -;----:--:;-----.- ............-----.... -;

o-l--...,...-.:::..:....;....:----r----r---,----,---,--,----,--.......,.---,---,r--r--r--,
o 05 10 1.5

FIG. 5. Stress concentration factors for alb = 1.



Effects of non-propagating plate waves on dynamical stress concentrations 367

Figures 3-5 show the relationship between the stress concentration factors and non
dimensionalized frequency of the incident wave for several values ofalb at several positions
on the boundary of the cavity. In these plots only the magnitudes are shown and the
results are what should be expected from knowledge ofPao's results except for frequencies
which are neighboring to a few discrete values. Table 1 lists the frequencies at which the
stress concentration factors peak and the peak values obtained for these stress concentra
tion factors. It should be remarked that in some instances it is difficult to obtain an accurate
number for a maximum value of a stress concentration factor since such a factor is
changing very rapidly with n in the vicinity of the peak, and it is searched for by increment
ing n. An extremely small increment would have to be chosen to obtain an accurate value.

TABLE I. MAXIMUM VALUES FOR STRESS CONCENTRATION FACTORS AND

FREQUENCIES AT WHICH THESE VALUES OCCUR

Table lao alb = 3

~r 0 nl2 n

0·60 1 0·5
1-<l9 12 12
1-35 10 10 10
1-444 24 36
1·446 25 9 36

Table lb. alb = 2

~I 0 nl2 n

0·78 5 4
1·22 9 7 7
1-42 8 7
1·453 43 40 41

Table Ie. alb = 1

~I 0 nl2 n

0·81 5 6 5
1·30 4 4
1·483 40 38 40

Such a difficulty is of little importance, however, since it is beyond the scope of the study
and the accuracy of the theory to predict a precise value for the stress concentration
factor. All that is of interest here is to note significant changes.

The source of the sharp increases in the stress concentration factors may be seen to
reside in the amplitudes of the waves generated at the boundary of the traction free cavity
by the incident plane wave. These amplitudes are given by the system ofalgebraic equations
(15). An analysis of the amplitudes for a given n, as a function of n, shows that they go
through a sharp maximum at a value ofn that depends on the value of n and the value of
alb. The values of n at which these peaks occur are given in Table 2.
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TABLE 2. NON-DIMENSIONALIZED FREQUENCIES AT WHICH AMPLITUDES OF WAVES

GENERATED AT BOUNDARY GO THROUGH A PEAK VALUE

>;:\ 0 2 3

1 1-485 1'30 0·81
2 1·45 1-42 1·22 0'78
3 1·448 1-44 1·35 1·09

4

0·60

Tables 1 and 2 allow an immediate association between a peak in a stress concentration
factor and a peak in the amplitudes of some waves that arise due to the interaction of the
incident wave and the cavity. It also indicates the reason why the stress concentration at
() = nl2 does not, in some cases, change significantly when those at () = 0 and () = n do;
the reason being that the amplitudes which are going through a maximum are those
associated with waves which have a node at () = n12.

Finally, to show the behavior of the amplitudes of the generated waves in the vicinity
of a peak, Fig. 6 considers the case of alb = 3; n = 2 in the vicinity of Q = 1·44. These
graphs show both the occurrence of the peak and the fact that the phase of the generated
propagating wave goes through a rapid change when taken as a function of Q in this
region.

One may attempt to draw a comparison between the results obtained in this study
with those previously reported by Gazis and Mindlin pertaining to the generation of
extensional waves at a traction free boundary by an incident straight crested extensional
wave. Their results predict an edge resonance, characterized by a maximum for the
amplitudes of the non-propagating waves at a non-dimensionalized frequency, Q = 1·314.

In the present problem, for the case of n = 0 the comparison appears straightforward
since the boundary approaches a plane boundary as alb becomes large and the circularly
crested waves, which correspond to n = 0, approach straight crested waves as alb becomes
large. By taking appropriate limits it may be shown that the coefficients of the amplitudes
of the generated waves in equations (15) approach the corresponding quantities given in
Ref. [5] as alb approaches infinity. Numerically, the results obtained here give as the
frequencies at which peaks occur, Q = 1'483, 1'453, and 1·446 for alb = 1,2 and 3,
respectively. Thus, a gradual tendency toward Q = 1·314 may be noted.

For n > 0, the comparison is not as straightforward since the generated waves are
not circularly crested but rather have two or more nodal lines perpendicular to the
boundary. In the limit of alb approaching infinity, the distances between these nodal
lines become infinite for any finite n and once again it may be shown that the limit will
approach the straight crested waves as above. For finite alb, however, it might be expected
that the finite distances between nodes in the circumferential direction will introduce
significant differences in the frequencies at which an edge resonance occurs.

The results show that for a given alb, the frequency at which the amplitudes peak
decreases with an increase in n; while for a given n, exclusive of n = 0 the frequency
increases for an increase of alb. Furthermore, the difference between resonant frequencies
associated with any two n's becomes smaller as alb increases. This behavior appears to
strengthen the possible conjecture that resonance occurs when some additive combination
of the propagation constant of a generated wave, which determines the frequency, and
the inverse of the distance between nodes in the circumferential direction attains a certain
value.
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CONCLUDING REMARKS

The fact that the amplitudes associated with the propagating extensional and face
shearing waves that are generated at the cavity change significantly near the frequencies
associated with an edge resonance indicates that the occurrence of such a resonance will
have an effect on the spatial variation of the stress field in a region which is not confined
to the immediate vicinity of the cavity. The effects of the propagating waves will decrease
with distance from the cavity as llr whereas the effects of the non-propagating waves will
decrease with distance from the cavity as approximately exp ( - cr), c being some constant.
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If the frequency of the incident wave is near that of a resonance corresponding to a specific
n, the generated waves associated with this value of n will be of a greater amplitude than
they would be for other frequencies. Hence, the spatial variation of the stress field should
be influenced to a greater extent by these waves at these frequencies. Since the changes in
amplitudes with frequency is great near a resonance, a rapid change of spatial variation
with frequency should also occur.

Another feature that is obvious is the rapid change in phase ofthe generated propagating
waves with frequency in the vicinity of a resonance. In the case of a transient disturbance
incident upon the cavity, this rapid change in phase will result in the energy contained at
frequencies in the vicinity of an edge resonance being dispersed. As reasoned by Gazis
and Mindlin, this occurs since the energy contained at such frequencies is temporarily
trapped in the vibration set up in the vicinity of the cavity and only gradually leaked into
the propagating waves. Consistent with the result above, the energy will be leaked into
those propagating waves which are associated with the same n as is the edge resonance.
This temporary entrapment and leakage of energy will result in a long tail appended to a
transient which is a superposition of waves of characteristic frequencies (i.e. frequencies
of edge resonances) and characteristic spatial variations.

Finally, one might draw an analogy between the second order theory of extensional
vibrations of plates used in this report and the three dimensional theory of materials
with micro-structure presented by Mindlin [6]. As pointed out by Mindlin, the dispersion
relations of the second order plate theory have their counterpart in the three dimensional
dispersion relations obtained within the framework of theory governing materials with
micro-structure leading one to suspect that effects found using the second order plate
theory might also have their counterpart. The possibility oflarge values for dynamic stress
concentrations occurring at select frequencies may be one of these effects. It would be one
of the more interesting effects since it would represent a phenomenon that is not contained
in classical elasticity theory rather than a case of adding a numerical correction to an
elasticity solution.
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A6CTpaKT-l1ccnC~YCTCli KOHl.\CHTpal.\lIl1 Hanpll)J{eHIIH BOKpyr Kpyrnoro oTBepcTlIlI B 6eCKOHC'iHOH
ynpyroH nnaCTIIHKC, npll ncpcxo~c nnocKoH BonHbI pacTlI)J{cHlIlI, B paMKax npll6nll)J{cHHoH TCOpllll,
Y'iIlTbIBalOIl.\cH 31j11j1cKT conpll)J{cHlIlI MC)J{~Y CIIMMCTPIl'iCCKIIMII nOnCpC'iHbIMII ~cljlopMal.\lIl1MII pacTlI
)J{CHlIlI II CHMMCTpll'iCCKIIMH nOnCpC'iHbIMII ~cljlopMal.\lIlIMII C~Bllra. CnCl.\lIanhHOc BHIIMaHIlC cnC~YCT

o6paTIITb Ha O'iCHh 6onhwyIO KOHl.\cHTpal.\1I1O Hanpll)J{cHIIH, KOTopali nonY'iaCTCli ~nll HCKOTOpblX
KOM6I1Hal.\IIH TOnIl.\IIHhI nnaCTIIHKII, ~lIaMCTpa OTBCpCTlIlI II cny'iaHHOH ~nllHbI BOnHbI. Ka)J{CTClI,
'ITO IICTO'lHIIK 3TOH 60nhWOH KOHl.\CHTpaI.\III1 Hanpll)J{CHIIH, Bhl3BaH Hanll'iIlCM BII6paI.\IIII 60nbWOH
CTcneHII, KOTopali OrpaHII'iIlBaCTCli paHOHOM HcnocpC~CTBCHHOH OKpCCTHOCTII OTBCpCTlIlI.


